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Abstract
Reticulations in a phylogenetic network represent processes such as gene flow, admix-
ture, recombination and hybrid speciation. Extending definitions from the tree setting,
an anomalous network is one in which some unrooted tree topology displayed in
the network appears in gene trees with a lower frequency than a tree not displayed
in the network. We investigate anomalous networks under the Network Multispecies
Coalescent Model with possible correlated inheritance at reticulations. Focusing on
subsets of 4 taxa, we describe a new algorithm to calculate quartet concordance fac-
tors on networks of any level, faster than previous algorithms because of its focus
on 4 taxa. We then study topological properties required for a 4-taxon network to be
anomalous, uncovering the key role of 32-cycles: cycles of 3 edges parent to a sister
group of 2 taxa. Under the model of common inheritance, that is, when each gene
tree coalesces within a species tree displayed in the network, we prove that 4-taxon
networks are never anomalous. Under independent and various levels of correlated
inheritance, we use simulations under realistic parameters to quantify the prevalence
of anomalous 4-taxon networks, finding that truly anomalous networks are rare. At
the same time, however, we find a significant fraction of networks close enough to
the anomaly zone to appear anomalous, when considering the quartet concordance
factors observed from a few hundred genes. These apparent anomalies may challenge
network inference methods.
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1 Introduction

Inference of the phylogenetic history of a group of species or populations is com-
plicated by the fact that different loci may have different histories. Gene trees can
conflict with each other and with the species history due to various biological pro-
cesses, including incomplete lineage sorting (ILS) within each population (Maddison
1997). When the species history is a tree, without gene flow or reticulation, ILS may
cause gene trees to match the species tree topology at a lower frequency than they
match some other tree topology that conflicts with the species tree. In this case, tree
topologies with higher frequency than the species tree are called anomalous, and the
species tree is in the “anomaly zone” (Degnan and Salter 2005; Degnan and Rosen-
berg 2006). This phenomenon has been thoroughly studied because when it occurs, a
consensus or majority vote of gene trees can mislead the inference of the species tree
(Kubatko and Degnan 2007). Fortunately, when the species phylogeny is a tree, there
are no anomalous rooted gene trees on 3 taxa (Pamilo andNei 1988) and no anomalous
unrooted gene trees on 4 taxa (Allman et al. 2011). This is the basis for quartet-based
species tree inference methods, which use 4-taxon subsets in gene trees, e.g. BUCKy
(Larget et al. 2010), ASTRAL (Zhang et al. 2018), SVDQuartets (Chifman and
Kubatko 2014).

When the species phylogeny includes reticulation events such as gene flow and
hybridization, it is best represented by a species network. On species networks, anoma-
lies caused by ILS have been much less studied than on species trees. The simplest
case is when all trees displayed in the species network have the same topology, such
as when all reticulations involve gene flow between sister species. In that scenario,
one might expect that this tree topology is represented in gene trees in equal or higher
frequency than any other tree topology. However, in the presence of reticulations, this
expectation is not always met, including on 3 taxa for rooted gene trees and on 4 taxa
for unrooted gene trees. Several authors found examples of anomalous networks on
4 taxa displaying a unique unrooted tree topology (Solís-Lemus et al. 2016; Baños
2019; Allman et al. 2019), whose frequency in gene trees can be lower than that of any
other unrooted tree topology, even as low as 0% (Allman et al. 2023). Solís-Lemus
et al. (2016) found a similar behavior on 3-taxon networks when considering rooted
gene trees, and showed that the anomalously low frequency of gene trees matching
the network topology may lead to misleading and inconsistent inference of the species
history. This anomaly was also shown to occur under a model of continuous gene flow,
with negative impact on phylogenetic inference (Long and Kubatko 2018; Jiao and
Yang 2021).

Typically, networks displaymore than a single tree topology. Onemight then expect
that tree topologies displayed in the network would occur with a higher frequency
among gene trees than any tree not displayed in the species network. When this fails,
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we call the network “anomalous”. If a species network is anomalous, then one may
expect data from gene tree frequencies to misleadingly suggest that low-frequency
topologies are not displayed in the network, which may again hinder inference of the
species history.

In this work, we begin by defining anomalous networks formally, based on the set
of trees displayed in the network. We use a slightly different definition than that of
Zhu et al. (2016), who focused on the larger set of parental trees instead of displayed
trees. Our choice captures the anomalies on 4 taxa described above, that were shown
to cause misleading inference.

Second, we advance the theoretical study of anomalous networks, focusing on
4-taxon networks. These small networks are particularly relevant because many
widely-used inference methods are based on 4-taxon subsets, with pseudo-likelihood
or combinatorial criteria used to obtain larger networks. This approach scales bet-
ter than a direct approach on the full data, and underlies SNaQ (Solís-Lemus and
Ané 2016), PhyloNet-MPL (Yu and Nakhleh 2015), NANUQ (Allman et al. 2019),
PhyNEST (Kong et al. 2022), ADMIXTOOLS 2 (Patterson et al. 2012; Maier et al.
2022) and TriLoNet (Oldman et al. 2016).

On a subset of 4 taxa there are only 3 possible unrooted binary trees, whose frequen-
cies among gene trees are called quartet concordance factors (quartet CFs). Under the
coalescent model, we prove that the root of a large network is not identifiable from
its quartet concordance factors, extending a result known for the class of trees and
level-1 networks (Solís-Lemus and Ané 2016; Baños 2019). We also prove that small
“sub-blobs” with a single entry and a single exit (formally defined below) are not
identifiable from quartet concordance factors. This includes parallel hybrid edges that
may be due to species splitting after the appearance of a geographical barrier (e.g.
glacier) and merging again when the barrier disappears. These sub-blobs can also be
due to sparse taxon sampling or ghost species, whose importance is now increasingly
recognized (e.g. Tricou et al. 2022). Finally, we investigate the topologies of networks
that can give rise to anomalies on 4 taxa. We conjecture that an anomaly requires
the network to contain a 32-cycle. Informally, this is an undirected cycle involving 3
nodes, one of them hybrid between the other other two, with 2 taxa descendant from
the hybrid. This is the only structure previously found to cause anomalies, and is the
only one causing anomalies on level-1 networks. We prove this conjecture under addi-
tional assumptions, motivated by evidence from simulations. Conversely, any network
containing a 32-cycle is anomalous under some set of parameters.

We present a new recursive algorithm to calculate quartet concordance factors pre-
dicted by any phylogenetic network, regardless of its graph complexity. Importantly,
this algorithm is not limited to networks of level 1, and leverages the small sample
size (4 taxa) to be more efficient than general algorithms to calculate the expected fre-
quency of a given tree topology (Yu et al. 2012). We describe our algorithm under the
extended coalescent model by Fogg et al. (2023), which includes possible correlated
inheritance of multiple lineages at a given locus. With no correlation, this model is the
most widely used network coalescent model, with independent lineages. At the other
extreme, multiple lineages of the same locus must be inherited by the same parental
population, although the parent may vary across loci. Under this coalescent model of
common inheritance in which each gene tree coalesces within a species tree displayed
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in the network (used for instance by Gerard et al. 2011; Wu 2020; Lutteropp et al.
2022; Kong et al. 2022), we prove that there are no anomalous networks: anomalies
require some de-coupling of the inheritance of multiple lineages of the same locus.

Finally, using this algorithm, we quantify the frequency of anomalous 4-taxon
networks using simulations under a birth-death-hybridization process and realistic
parameters of speciation, extinction, and reticulation rates. We find that anomalous
4-taxon networks occur at low frequency. We also find that a more significant propor-
tion of 4-taxon networks are sufficiently close to the anomaly zone so as to produce
anomalous empirical quartet concordance factors, as observed in a sample of 300
genes, especially when the speciation rate is similar to or higher than the coalescence
rate.

2 Notations and definitions

2.1 Phylogenetic networks, displayed trees, blobs

Weuse standard definitions and notations for phylogenetic networks, mostly following
Steel (2016) and Baños (2019). A rooted phylogenetic network N+ on taxon set X
is a rooted directed acyclic finite graph with vertices V = {r} � VL � VH � VT and
edges E = EH � ET , where VL are the leaves (of out-degree 0) in bijection with X ,
r = r(N+) is the root (of in-degree 0), VT are the internal tree nodes of in-degree 1
and VH are the hybrid nodes of in-degree greater than 1. An edge e = (p, c) is a tree
edge (i.e. e ∈ ET ) if its child c is a tree node or a leaf, and a hybrid edge otherwise
(i.e. e ∈ EH ). Note that degree-2 nodes are allowed, and leaves are required to have
in-degree exactly 1. For a node c, we denote by pa(c) the parent nodes of c. For a
hybrid edge e, its partners are the other hybrid edges with the same child node. We
use the partial order v ≥ w on nodes, when v is an ancestor of w, and say that v is
above w (and that w is below v). The lowest stable ancestor (LSA) of Y ⊆ X is the
lowest node that lies on all paths from the root to leaves in Y (Steel 2016, p. 263). The
LSA of the network, LSA(N+), is the LSA of X . If r(N+) = LSA(N+), we say that
N+ is an LSA network.

The semidirected phylogenetic network N− induced by N+ is the graph obtained
by removing all edges and nodes above s = LSA(N+), undirecting all tree edges and
suppressing s if it has degree 2, as illustrated in Fig. 1 (Solís-Lemus and Ané 2016;
Baños 2019; Xu and Ané 2023). Following Bordewich et al. (2018), an up-down path
in N+ is a sequence of distinct nodes u1u2 . . . un with a summit node s = ui such that
ui . . . u2u1 and ui . . . un−1un are directed paths in N+. Up-down paths in N+ are in
bijection with paths in N− that do not contain any v-structure, that is, do not have any
subsequence p1vp2 such that (p1, v) and (p2, v) are both directed edges, so the up-
down terminology can be used on N− as well (Xu and Ané 2023). In what follows, by
“network” we mean rooted or semidirected phylogenetic network, typically denoted
by N , adding the + or − superscript only when required.

For a network N on taxa X and a subset Y ⊆ X , the subnetwork NY induced by Y
is the subgraph of N induced by all nodes and edges on up-down paths between any
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two taxa in Y . By Baños (2019) NY is an LSA network and if N− is the semidirected
network induced by a rooted network N+, then (N+

Y )
− = N−

Y .
A rooted network is binary (or resolved) if all nodes in VH and VT have degree 3

and its root has degree 2. A semidirected network is binary if all of its non-leaf nodes
have degree 3. A network is bicombining if all its hybrid nodes have exactly 2 parents.

A network N is a metric network when each edge e is assigned a length �(e) ≥ 0
and a hybridization parameter (or inheritance probability) γ (e) ∈ [0, 1] such that∑

u∈pa(v) γ ((u, v)) = 1 for each node v. In particular, γ (e) = 1 if e is a tree edge.
Unless explicitly stated otherwise, we require that γ (e) ∈ (0, 1) if e is a hybrid edge.

A (topological) tree T is displayed in a network N if it can be obtained from N by
deleting all but one parent hybrid edge from each hybrid node in N , and then deleting
any edge and node not contained in any up-down path between two leaves. By default,
degree-2 nodes are not suppressed, so that each edge in T maps to a unique edge in
N . The set of trees displayed in N is denoted as D(N ). If N is semidirected, T is
considered unrooted. When N is a metric network, the weight of a displayed tree T
in N is defined as

γ (T ) =
∏

e∈T
γ (e)

so that the weights of all trees in D(N ) sum to 1 (Xu and Ané 2023).
WithU (T ) denoting the unrooted topology of a tree T after suppressing any degree-

2 nodes, we say that U (T ) is induced by T or that T induces U (T ). For an unrooted
tree topology T̃ with no degree-2 nodes, its weight γ (T̃ ) in N is

γ (T̃ ) =
∑

T∈D(N ); U (T )=T̃

γ (T )

the total weight of displayed trees inducing T̃ . If no tree displayed in N induces T̃ ,
then γ (T̃ ) = 0.

The following definitions generalize the notion of displayed trees to displayed
networks, extending Definition 1 of Bernardini et al. (2023) to allow for semidirected
networks.

Definition 1 Let N be a rooted or semidirected network on a set of taxa X , and N ′ a
network of the same type on X ′ ⊆ X . Then an embedding of N ′ in N is an injective
map φ of the nodes of N ′ to the nodes of N , and of the edges of N ′ to edge-disjoint
semidirected paths of N , such that φ on nodes respects the labelling of the leaves,
and φ on edges respects edge and path directions and the mapping of the nodes. The
map φ respects edge and path directions if any semidirected path of N ′ with child v

is mapped to a semidirected path with child φ(v).

Definition 2 A network N ′ is displayed in a network N if there is an embedding of
N ′ in N .

A blob B in a network N is a maximal subgraph of N that is 2-edge-connected (that
is, removing an edge does not disconnect it) when considered as an undirected graph.
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Fig. 1 Left: rooted network N+ whose LSA s is different from the root r , containing a 4-blob which is
a 4-cycle. Middle: LSA network Ñ+ obtained from N+ by removing edges and nodes above s, whose
non-trivial blob is now a 3-blob and a 4-cycle. Right: semidirected network N− induced by N+, containing
a 32-cycle. Black edges are directed in N+ and Ñ+, and undirected in N−

A blob is trivial if it consists of a single node. A node u in a blob B is a boundary node
of B in N if there exists an edge e /∈ B incident to B at u. A blob has degree m, or is
an m-blob if it is incident to m edges. Note that if N+ is not an LSA network and B is
a blob containing LSA(N+), then the degree of B in N+ is greater than the degree of
the corresponding blob in the induced semidirected network N− (Fig. 1). Observe too
that any lowest node in a non-trivial blob B must be a boundary and hybrid node, and
every edge incident to B must be a cut edge. The level of B is the number of hybrid
edges in B, minus the number of hybrid nodes in B (Huson et al. 2010, p. 150). If B
is bicombining, then this is simply the number of hybrid nodes. The level of N is the
maximum level of its blobs.

By (up-down) cycle in a rooted or semidirected network N , we mean an up-down
path that forms a cycle when undirected. A k-cycle is a cycle with k edges, counted
after suppressing all degree-2 nodes in N , except the root if N is rooted.

Definition 3 A rooted or semidirected network N contains a 32-cycle if it displays a
4-taxon networkwith a single non-trivial blobwhich is a 3-cycle with 2 taxa descended
from its hybrid node (see Fig. 1).

A quartet is an unrooted 4-taxon binary tree without any degree-2 nodes. The
quartets on taxa X = {a, b, c, d} are in bijection with the non-trivial splits of X ,
denoted as ab|cd, ac|bd and ad|bc. A quartet is displayed in a network N if the
corresponding 4-taxon topology is induced by a tree displayed in N .

2.2 The network coalescent and quartet concordance factors (CFs)

To model the generation of gene trees on a species network, we use the coalescent
model within each population, which tracks the genealogy of a sample of individuals
back in time, assuming a neutral locus (Wakeley 2008; Hahn 2018). The coalescent
time between two individuals in the same population, that is, the time when they first
share a common ancestor, follows an exponential distribution with rate 1 when time
is measured in coalescent units (number of generations / effective population size).
With more than two individuals in a population, each pair is equally likely to be the
first to coalesce.

123



Anomalous networks under the multispecies… Page 7 of 36    29 

This within-population process is used along each edge in a network. At a tree node
in the species network, all gene copies are inherited from the one parent edge and the
coalescent process continues along that edge, going back in time. On networks with
κ > 0 reticulations, we assume the Network Multi-Species Coalescent model with
correlated inheritance NMSC(ρ), where ρ is the correlation between gene copies at
reticulation events (Fogg et al. 2023). At each hybrid node and for each locus, the gene
copies present at the node are inherited from one of the parental lineages according
to a Dirichlet process, with the base distribution given by the inheritance probabilities
γ (e), and with concentration parameter α = (1− ρ)/ρ. When ρ = 0 for example, at
each hybrid node, gene copies of the given locus have independent parental origins.
This is the most commonly-used coalescent model assumption for species network
inference (Yu et al. 2014; Solís-Lemus and Ané 2016; Rabier et al. 2021; Allman et al.
2019; Blair and Ané 2020). At the other extreme, gene copies have the same parental
origin when ρ = 1 (and this origin varies across loci). This common inheritance model
is used by various authors, in part to improve the computational tractability of network
inference (Gerard et al. 2011; Wu 2020; Lutteropp et al. 2022; Kong et al. 2022).

The NMSC(ρ) model provides a continuum between these two extremes. It can
account for different levels of gene flowacross different loci, such as if selection caused
some loci to be inherited from one parent more than other loci. Under the NMSC(ρ)
model, gene i evolves under the standard network coalescent model according to its
own inheritance probabilities, drawn at each reticulation from a Dirichlet distribution
with concentration α = (1 − ρ)/ρ, independently across genes (Fogg et al. 2023).
An equivalent description uses the correlation between the parental origins of any 2
lineages at a given hybrid node. In particular, at a hybrid node with parent edges e1
and e2, two lineages are inherited from (ei , e j ) with probability (1− ρ)γ (ei )γ (e j ) if
i �= j , or (1 − ρ)γ (ei )2 + ργ (ei ) if i = j .

Given a metric rooted network N+ on taxon set X and a tree topology T on a
subset Y ⊆ X , rooted or unrooted, denote by Pρ(T |N+) the probability of T under
the NMSC(ρ) model. Since these probabilities can be estimated from trees obtained
from molecular alignments across multiple loci (or genes) we often refer to T as a
“gene” tree. Similarly, we use Eρ to denote expectation under the NMSC(ρ).

In particular, for a 4-taxon subset {a, b, c, d} ⊆ X and an ordering of the 3 binary
quartets on these taxa, we denote the expected quartet concordance factors by the
vector

qCF(N+) = (
Pρ(ab|cd ∣

∣ N+), Pρ(ac|bd ∣
∣ N+), Pρ(ad|bc ∣

∣ N+)
)
, (1)

omitting the dependence on ρ and the four taxon names for notational convenience.
Note that regardless of the value of ρ, the unresolved gene tree has expectation 0. In
the next section (Proposition 3) we prove that qCF(N+) is in fact fully determined
by the semidirected network N− so that qCF(N+) = qCF(N−). In later sections, we
consider empirical quartet CFs observed in a sample of gene trees: Given a sample
S = {T1, · · · , Tm} of m trees inducing binary trees on {a, b, c, d}, the empirical
quartet CFs realized in S is the vector of quartet frequencies
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qCF(S) = 1

m

m∑

i=1

(
1ab|cd⊆Ti , 1ac|bd⊆Ti , 1ad|bc⊆Ti

)
, (2)

where 1 is the indicator function. In data, a gene tree may be uninformative about
{a, b, c, d} either because it is missing one or more of these 4 taxa, or because its
restriction to the 4 taxa is unresolved. Such gene trees would be ignored in calculating
empirical quartet CFs, withm corresponding to the number of informative trees in the
sample.

2.3 Anomalous networks

We generalize the notion of anomalous trees to networks, based on their properties
under the coalescent model.

Definition 4 (Anomalous network) Let N+ be a rooted metric network on X . N+ is
hard-anomalous under the NMSC(ρ), or simply anomalous, if there exist unrooted
binary tree topologies T1 and T2 on a taxon set Y ⊆ X such that T1 is induced by a tree
displayed in N+

Y , T2 is not induced by any tree displayed in N+
Y , and Pρ(T1|N+) <

Pρ(T2|N+). N+ is soft-anomalous if there exist unrooted binary tree topologies T1
and T2 on Y ⊆ X such that γ (T1) > γ (T2) and Pρ(T1|N+) < Pρ(T2|N+).

Ahard anomaly indicates amisleading signal in the sense that the highest probability
gene trees are not those displayed in the network. A soft anomaly allows for a more
general violation of intuition, that the hybrid parameters alone do not naively predict
the ordering of gene trees by probability. Both notions capture ways in which the
coalescent process on a network may lead to surprising gene tree distributions.

Ahard anomaly is also a soft anomaly, because a tree topologyT is displayed exactly
when γ (T ) > 0. This is why we refer to ‘hard-anomalous’ simply as ‘anomalous.’
Our work focuses primarily on hard anomalies because they are expected to cause
more difficulties for inference. Indeed, although we chose to focus our definition on
unrooted tree topologies, an analogous definition could be formulated for rooted tree
topologies. Our choice is motivated by the fact that gene trees estimated from aligned
molecular sequences are typically unrooted, and that error in rooted gene trees is
known to have adverse effects in species phylogeny inference methods that assume
gene trees are correctly rooted (Simmons and Gatesy 2015).

Definition 4 above extends that of Solís-Lemus et al. (2016), who first identified
anomalies in networks, but restricted their study to networks that display a single
quartet. Our definition is similar to but different from that of Zhu et al. (2016), who
focused on parental trees instead of displayed trees. A tree on X is a parental tree
of N+ if it is displayed in the MUL-tree obtained by unfolding N+ in postorder: by
duplicating each hybrid node with its descendant subtree to remove the reticulation
(Yu et al. 2012) (see Huber et al. 2016, for a formal definition). A tree displayed in
N+ is a parental tree, but the converse is not always true.

Parental trees are more useful than displayed trees to model polyploidization, when
the two gene copies inherited from diploid parents are maintained within each indi-
vidual in the polyploid species (Huber and Moulton 2006; Van Iersel et al. 2018). We
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Fig. 2 Examples of class-1 (left), class-2 (middle) and class-3 (right) networks with their displayed quartet
trees (bottom). Left:With edge lengths in coalescent units as shown and all inheritance probabilities γ = 0.5,
the network is anomalous (hard and soft) under independent inheritance, ρ = 0. Expected frequency of gene
quartet AD|BC is 28.45%, smaller than the 35.78% of AB|CD and AC |BD. Middle: Quartet AC |BD is
not displayed, but with edge lengths as shown and all γ = 0.5 the network is anomalous (hard and soft) if
ρ = 0. AC |BD has frequency 24.28%, greater than the 24.11% of AD|BC . Under common inheritance,
ρ = 1, the left and middle networks are not hard-anomalous. Right: If all γ = 0.5 and all edge lengths
are 1, this network is soft-anomalous for all ρ. Its displayed quartets have weights γ (AB|CD) = 0.18,
γ (AC |BD) = 0.4 and γ (AD|BC) = 0.42, but AC |BD is more frequent in gene trees (41.89%) than
AD|BC (36.64%) for all ρ

focus on displayed trees because the NMSC model is more relevant for homoploid
hybridization, when each gene tree represents the history at a single locus with equal
probability of coalescence between all pairs of gene copies. More importantly, we
focus on displayed trees because these anomalies negatively affect phylogenetic infer-
ence (Solís-Lemus et al. 2016; Long and Kubatko 2018; Jiao and Yang 2021), even
on networks classified as non-anomalous by Zhu et al. (2016) using parental trees.

On 3 or fewer taxa, there is a single unrooted binary tree topology. On 4 taxa there
are 3 unrooted binary tree topologies. We say that a 4-taxon network N is of class k
if there are k distinct unrooted binary topologies induced by its displayed trees. An
example from each class, for k = 1, 2, 3, is shown in Fig. 2.

While a 4-taxonnetwork N of class 3maybe soft-anomalous (Fig. 2, right), it cannot
be hard-anomalous because there does not exist any unrooted binary tree topologies
not induced by some tree displayed in N . An equivalent definition of (hard-)anomalous
binary networks on 4 taxa, based on their class, follows.

Definition 5 (Anomalous binary networks on 4 taxa) A 4-taxon binarymetric network
N of class 1 is anomalous ifPρ(T1|N ) < 1/3where T1 is the unique unrooted topology
induced by trees displayed in N . A 4-taxon network N of class 2 is anomalous if
Pρ(T3|N ) > min{Pρ(T1|N ), Pρ(T2|N )} where T3 is the unique unrooted topology
not induced by trees displayed in N , and T1, T2 are the other two unrooted binary tree
topologies on the 4 taxa.

That Definition 5 agrees with Definition 4 follows from the next lemma.

Lemma 1 A 4-taxon binary network N displays a single quartet tree (i.e., is of class 1)
if, and only if, it does not have a 4-blob.

Proof If a 4-taxon binary network N does not have a 4-blob, then it has two 3-blobs and
either or both can be non-trivial (Allman et al. 2023, Lemma 1). Thus N has a cut-edge
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separating two pairs of taxa, whose split is the only non-trivial split in its displayed
trees. (In this case, the two non-displayed quartets have equal CFs.) Conversely, let
N be a binary network with a 4-blob. That N displays 2 or more quartets was proved
implicitly (Allman et al. 2023, see Theorem 1 and proof) so we sketch the argument.
Iteratively delete hybrid edges from N while it continues to have a 4-blob, until the
resulting network has a lowest hybrid node h such that removing either parent edge
of h leads to subnetworks without a 4-blob. Call these subnetworks N1 and N2, and
let ei (i = 1, 2) be cut-edges in Ni inducing non-trivial splits. Then one can show e1
and e2 correspond to incompatible splits of N1 and N2. As any tree displayed in N1
or N2 is also displayed in N , quartets with these splits are both displayed by N . ��

3 Subgraph identifiability and subgraph requirements for anomalies

To begin our study of anomalous networks on 4 taxa, we provide some theoretical
results on quartet CFs for networks on 4 or more taxa.

3.1 The root is not identifiable from quartet concordance factors

The following result was implicit in (Xu and Ané (2023),proof of Proposition 14).

Lemma 2 Let N+
1 and N+

2 be two metric rooted networks on X. If their induced
metric semidirected networks are identical, N−

1 = N−
2 , then they have the same

unrooted weighted displayed trees. In particular, the root position is not identifiable
from unrooted weighted displayed trees.

Proof Let e be an edge in some tree displayed in N+
i (i = 1, 2). Since e must be on

an up-down path between taxa in N+
i , e cannot be above the LSA of N+

i , and we
can assume that both N+

1 and N+
2 are LSA networks. Then N+

i can be obtained from
N− = N−

i by possibly adding a degree-2 node and identifying one of the nodes as the
root. Hybrid edges are then in one-to-one correspondence between N+

1 , N+
2 and N−,

with identical hybridization parameters. This mapping induces a weight-preserving
correspondence of displayed trees on N+

1 , N+
2 and N−, when corresponding hybrid

edges are removed from each network. The result now follows because the only dif-
ference between corresponding displayed trees is their root. ��

Note that a semidirected network contains partial information about the root position
in N+. Indeed, a node h with incoming hybrid edges must be hybrid, and any edge
incident to h that is not incoming must be outgoing and cannot contain the root.
The direction of edges “below” h is also implied recursively and further constrains
the possible location of the root. For example, in the semidirected network of Fig. 1
(right), the root cannot be placed on any edge incident to the parent of a and b, but
could be located along any other edge.

Next we prove that, like weighted displayed trees, qCF(N+) does not depend on
the location of the root in N+, for any value of the correlation parameter ρ. This is
already known for level-1 networks when ρ = 0 (Solís-Lemus and Ané 2016; Baños
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2019), but we prove the general case. Consequently, the root is not identifiable from
quartet CFs, and whether a 4-taxon network N+ is anomalous or not is determined by
N−.

Proposition 3 Let N+
1 and N+

2 be twometric rooted networks on a set X. If N−
1 = N−

2 ,
then for every 4-taxon set qCF(N+

1 ) = qCF(N+
2 ). In particular, the subgraph above

the LSA of a rooted network does not affect quartet CFs.

The proof below is inductive, to provide a roadmap for the recursive calculation of
qCF presented in Algorithm 1. A shorter non-inductive proof is presented in Appendix
A.

Proof We need only consider the case when X is a set of 4 taxa. Let N+
1 and N+

2
have the same semidirected network N−, with κ hybrid nodes in N−. Then N+

1 and
N+
2 each have κ hybrid nodes below their respective LSAs. We prove the claim by

induction on κ . Without loss of generality, we may assume that any hybrid node in
N+
1 and N+

2 (and N−) has a single child edge. If a hybrid node has two or more child
edges, then we can insert a new child edge of length 0 without affecting the coalescent
process, and so without changing the quartet concordance factors.

First consider κ = 0, in which case the correlation ρ at hybrid nodes is not relevant.
If N+

1 and N+
2 are 4-taxon trees, then the result is well known. We extend that result

to allow N+
1 or N+

2 to have reticulations above their LSA, but none below the LSA.
In N+

i , the subnetwork rooted at the LSA is a rooted tree T+
i , with unrooted topology

N−, say a1a2|b1b2 with internal edge length t . If N− is a star, then we resolve it to a
binary tree, assigning length t = 0 to the new edge.

Without loss of generality, T+
i is either symmetric, or it is asymmetric with b1 sister

to clade (a1, a2). Let ui be the most recent common ancestor of a1 and b1 in T
+
i . If T+

i
is symmetric, then ui is the LSA of N+

i (and T+
i ). Otherwise, ui is the internal node

below the LSA. Let Ei be the event that no coalescent event occurs in N+
i below ui ,

and Ei its complement. Then P(Ei ) = exp(−t) is the same for i = 1, 2. Conditional
on Ei , the taxa below ui are exchangeable in the formation of a gene tree. These taxa
are a1, a2, b1 if T

+
i is asymmetric, all 4 taxa otherwise. Either way, the 3 quartets have

equal conditional concordance factors:

qCF(N+
i |Ei ) := (

Pρ(a1a2|b1b2
∣
∣ N+

i , Ei ), Pρ(a1b1|a2b2
∣
∣ N+

i , Ei ),

Pρ(a1b2|b1a2
∣
∣ N+

i , Ei )
) = (1/3, 1/3, 1/3).

If T+
i is asymmetric, then Ei occurs when (a1, a2) coalesce along their most recent

ancestral edge. If T+
i is symmetric, then Ei occurs when either (a1, a2) or (b1, b2)

coalesce along their most recent ancestral edge. In both cases, the quartet tree matches
N− conditional on Ei , so that qCF(N+

i |Ei ) = (1, 0, 0). Taken together, we find
qCF(N+

1 ) = qCF(N+
2 ).

Suppose now that there are κ ≥ 1 hybrid nodes in N−. In N−, choose a hybrid node
h with no descendant hybrid node. Since hybrid nodes and edges in N− and in the
LSA networks induced by N+

1 and N+
2 are in bijective correspondence, we reference

them with identical names. The subnetwork rooted at h is identical in N+
1 , N+

2 and
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N−, and is a tree by our choice of h. Let T+ denote this rooted tree and � the number
of its leaves. Note that ρ is not relevant to the coalescent process on T+.

The case � = 4 is impossible, because otherwise h would be above the LSA
of X , implying κ = 0. If � = 3, then without loss of generality we can assume
that T+ has an edge (h, u) below h, and the subtree rooted at u is a1a2|b1 with
internal edge length t . Let E be the event that (a1, a2) do not coalesce along this most
recent ancestral edge, and E its complement. With an argument similar to the case
that κ = 0, qCF(N+

1 ) = qCF(N+
2 ) because for both networks P(E) = exp(−t),

qCF(N+
i |E) = (1/3, 1/3, 1/3) and qCF(N+

i |E) = (1, 0, 0) when quartet trees are
ordered such that a1a2|b1b2 comes first.

For the cases � = 1 or 2, we use induction on the network size. Let e1 =
(v1, h), . . . , em = (vm, h) be the hybrid edges with child h, and let γ j = γ (e j ).

Assume first that � = 1. Let N ( j)
i be the network obtained from N+

i by deleting all
e1, . . . , em except e j and recursively pruning any unlabelled leaves. The tree T+ is a
single terminal edge so no coalescent event occurs on it, and

qCF(N+
i ) =

m∑

j=1

γ j qCF(N ( j)
i ).

By induction, qCF(N ( j)
1 ) = qCF(N ( j)

2 ) for every j , so qCF(N+
1 ) = qCF(N+

2 ).
Finally, assume � = 2. Then T+ contains two leaves, say a1 and a2, and 3 edges:

(h, u) of length t , and (u, a1), (u, a2). Let N
( jk)
i be the network obtained from N+

i by
the following steps:

1. Delete all e1, . . . , em except e j and ek , and recursively prune any unlabelled leaves.
2. If j = k, contract edge (h, u) (or equivalently, assign it length 0).
3. If j �= k, delete h, u and their incident edges, then reconnect the network with

new external (tree) edges (v j , a1) and (vk, a2), whose lengths do not affect the
coalescent process.

See Fig. 3 for an example of semi-directed versions of these networks. Given a quartet
ordering with a1a2|b1b2 first, we calculate qCF by conditioning on (a1, a2) coalescing
along (h, u) or not, and if not, conditioning on the parent edge of each lineage:

qCF(N+
i ) = (1 − e−t )(1, 0, 0) + e−t

m∑

j,k=1

γ j ((1 − ρ)γk + ρ1 j=k) qCF(N ( jk)
i ).

(3)

By induction, qCF(N ( jk)
1 ) = qCF(N ( jk)

2 ) for every j and k, so qCF(N+
1 ) = qCF(N+

2 ).
��

Note that on a network with |X | > 4, then for any subset Y ⊂ X of 4 taxa, LSA(Y )

can be strictly below LSA(X). By the second part of the proposition, the quartet CFs
for Y are determined by the subgraph induced by all paths from LSA(Y ) to the taxa
in Y .
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Fig. 3 Top: semidirected network N with a 32-cycle. Bottom: semidirected networks N (11), N (22) and
N (12) used to calculate qCF(N ) via (3). N (21) is not shown. Node labels are in black, edge lengths in
green, and inheritance probabilities in blue (γ1 + γ2 = 1)

Example 1 (Anomaly zone for a 32-cycle) We apply the formulas in the proof to a
32-cycle network in Fig. 3 (top), an example of the case � = 2 with semidirected
networks N ( jk) shown in Fig. 3 (bottom). Using (3) we obtain:

Pρ(a1a2|b1b2
∣
∣ N ) = (1 − e−t ) + e−t

⎛

⎝2(1 − ρ)γ1γ2
1

3
e−s0

+
2∑

j=1

(
(1 − ρ)γ 2

j + ργ j

) (

1 − 2

3
e−s j

)
⎞

⎠

and Pρ(a1b1|a2b2
∣
∣ N ) = Pρ(a1b2|a2b1

∣
∣ N ) by symmetry. For fixed ρ, t , s0 and

γ1 = 1−γ2, theCF of the displayed quartet a1b1|a2b2 isminimizedwhen s1 = s2 = 0,
in which case

Pρ(a1a2|b1b2
∣
∣ N ) = 1

3
+ 2

3
(1 − e−t ) − 2

3
e−t (1 − ρ)γ1γ2(1 − e−s0).

This expression generalizes eq. (1) by Allman et al. (2019) who studied the anomaly
zone for a 32-cycle under ρ = 0 (see their Fig. 5). When we set t = 0 and s0 tends
to infinity, Pρ(a1a2|b1b2

∣
∣ N ) tends to 1/3 − (2/3)(1 − ρ)γ1γ2 ≤ 1/3. Therefore, N

can be anomalous for any fixed value of ρ < 1 and any γ1 ∈ (0, 1), for sufficiently
short edges incident to the hybrid node and long tree edge in the cycle.

In Example 1, the quartet CFs from a 32-cycle network N are given by the same
formulas as for a 4-taxon unrooted tree, provided the tree’s internal edge length is
allowed to be negative when N is anomalous. Although the mechanistic coalescent
process requires non-negative edge lengths, using negative branch lengths in this way
will be convenient in stating subsequent results.
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Fig. 4 Examples of degree-2 sub-blobsG with boundary nodes u and v within a larger semidirected network
N . The root may be trapped in G (right) or not (left)

3.2 Degree-2 blobs and sub-blobs are not identifiable from quartet CFs

In this section, we show that some local subgraphs, namely 2-sub-blobs, can be sim-
plified into a single edge without affecting the values of quartet CFs. This is already
known in a different context, for average distances on a network without the coales-
cent model (Xu and Ané 2023). Here, the length of the replacement edge is defined
differently, with the goal of maintaining quartet CFs specifically. We first give the
2-sub-blob definition formally.

Definition 6 Let N = (V , E) be a rooted or semidirected network and G a subgraph
of N induced by a set W ⊂ V of at least two vertices. Then G is hybrid-closed in
N if, for any hybrid edge e in G, all of e’s partner hybrid edges in N are also in G.
The boundary ∂G of G in N is the set of nodes w ∈ W adjacent to a node z /∈ W .
The graph G is a sub-blob of degree 2, or a 2-sub-blob in N if it is connected, has no
cut edge in G, is hybrid-closed in N , and its boundary in N has exactly 2 nodes. If
N = N− is semidirected, G traps the root if r(N+) ∈ G � ∂G for all rooted LSA
networks N+ inducing N− (e.g., Fig. 4 right).

In particular, non-trivial 2-blobs are 2-sub-blobs in a binary network N , as are sub-
graphs consisting of 2 nodes connected by parallel edges, even if they are part of a
larger blob.

Theorem 4 Let N be a metric network and G be a 2-sub-blob in N with boundary
nodes u and v. Then there exists t = t(G, ρ) ≥ − log(3/2) such that replacing G
with a single tree edge (u, v) or (v, u) of length t (placing the root at u or v if the root
was in G) leaves the quartet concordance factors of N unchanged. If G does not trap
the root, or if u (or v) has a single descendant leaf in N � {v} (resp. N � {u}), then
t ≥ 0.

Before proving Theorem 4, we illustrate its use with an example and a corollary.
Consider G with m parallel edges between two nodes u and v, of lengths t j and
inheritance probabilities γ j , j = 1, . . . ,m. Then the m edges can be replaced by a
single tree edge, whose length t ≥ 0 satisfies 1−e−t = ∑m

j=1((1−ρ)γ 2
j +ργ j ) (1−

e−t j ). For another application, we can rule out anomalies on simple networks:

Corollary 5 Let N be a metric 4-taxon network whose non-trivial blobs are of degree
at most 2. Assume that for any 2-blob B in N with boundary nodes u and v, B does
not trap the root or u (or v) has a single descendant leaf in N � {v} (resp. N � {u}).
Then N is neither hard- nor soft-anomalous.
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Proof By Theorem 4, any 2-blob in N can be replaced by a single edge of non-
negative length, simplifying N to a tree. Since 4-taxon species trees (binary or star)
are not anomalous, N is neither anomalous nor soft-anomalous. ��

Corollary 5 can be extended further, to networks with a 2-sub-blob G trapping
the root, provided that it is adjacent to 2 edges (one at each boundary node) whose
lengths �1 and �2 satisfy �1 + �2 ≥ log(3/2) ≈ 0.405 coalescent units. Then N has
the same quartet CFs as a tree with non-negative edge lengths, and therefore is not
anomalous. This follows because quartet CFs are unchanged when a degree-2 tree
node v is suppressed, that is, when the two edges e and e′ incident to v (one of them a
tree edge) are fused into a single edge of length �(e) + �(e′). Namely, let e = (u, v)

be the edge replacing G, e1 = (u, w1) and e2 = (v,w2) be the edges incident to u
and v in N , of lengths t ≥ − log(3/2), �1 and �2. After suppressing v, then u (and
setting the root to w1 if N was rooted), the up-down path (e1, e, e2) is replaced by a
single edge (w1, w2) of length �1 + t + �2 ≥ 0 if �1 + �2 ≥ log(3/2).

Proof of Theorem 4 Let N ′ be the network obtained from N after replacing G with
a single edge of length t (to be determined). More specifically, all edges in G are
removed and all nodes in G other than u and v are removed. A new edge enew incident
to u and v is then added. It is a tree edge in N ′ because in N , all hybrid edges going
into u or v are either all in G, or all outside of G, since G is hybrid-closed. If N is
rooted then we set enew to (u, v) (resp. (v, u)) if v (resp. u) is a descendant of u (resp.
v) in N . If neither node is a descendant of the other, then r(N ) ∈ G � {u, v} and we
arbitrarily root N ′ at u and set enew = (u, v).

We first prove that either u or v is a hybrid node of N , with all its parents in G. G
must contain a hybrid node h because it must contain an undirected cycle. If neither
u nor v is hybrid, then construct a path p down from h until p can no longer stay in
G. This path p must end at ∂G, say at v. (This is because leaves are of degree 1, so
external edges are cut edges and cannot be in G). The last edge e in p, incident to v,
can be removed from G without disconnecting G. Therefore, v is incident to another
edge e′ in G. Since p cannot be extended in G, e′ must be a hybrid edge going into
v, proving that v is a hybrid node with at least two parents in G. Since G is hybrid
closed, all parents of v are in G.

Fix 4 taxa, and let q and q ′ be their concordance factors in N and in N ′, for
some ordering of the 3 quartets. We seek to show that q = q ′ for some value of
t still to be determined, independently of the choice of the 4 taxa. Let H be the
random variable describing the coalescent and inheritance history of the 4 lineages
along edges that are outside G and non-ancestral to G. (By coalescent and inheritance
history, we mean information about edges in which coalescent events occur, which
lineages coalesce at these events (Degnan and Salter 2005) and which parental edge
each lineage is inherited from at reticulations.) Since N and N ′ are identical outsideG,
the distribution of H is identical under N and N ′. Therefore, we need simply to show
thatEρ(q|H) = Eρ(q ′|H). Let nv be the number of lineages from the 4 taxa that enter
G through v, when following lineages back in time. Since all edges incident to v that
are not in G are children of v, the subnetwork rooted at v is outside and non-ancestral
to G, and H includes all the coalescent and inheritance history in this subnetwork.
Therefore nv is fixed given H , and the distribution of nv is the same under N and N ′.
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Since the nv taxa entering v are exchangeable, Eρ(q|H , nv = j)=Eρ(q ′|H , nv = j)
=(1/3, 1/3, 1/3) for j = 3, 4. Thus, we may now assume nv ≤ 2.

First consider the case that the root of N can be placed at u or outside G (Fig. 4
left), and assume such a rooting for N . In this case, u is the lowest stable ancestor of
G. Following lineages back in time, all lineages entering G must enter G through v

and exit through u. If nv = 0 or nv = 1, then there cannot be any coalescent event
between v and u (going back in time) so Eρ(q|H , nv = j) = Eρ(q ′|H , nv = j) for
j = 0, 1. If nv = 2, we ensure that Eρ(q|H , nv = 2) = Eρ(q ′|H , nv = 2) by setting
the length t of enew in N ′ such that

1 − exp(−t) = Pρ{Nu = 1 | nv = 2,G}, (4)

where the random variable Nu is the number of lineages exiting G at u. This condition
ensures that the probability of coalescence on (u, v) in N ′ matches that of 2 lineages
entering G at v coalescing by the time they reach u. This probability, on the right in
(4), depends on the sub-blob G but not on the choice of 4 taxa. It must lie in [0, 1],
and therefore t ≥ 0.

Now consider the case that the root of N is a vertex inG other than u, which implies
thatG traps the root (Fig. 4 right). Following lineages back in time, all lineages entering
G must enter G through either v or u. Since edges not in G are non-ancestral to all
nodes of G, the number nu of lineages entering G through u is determined by H .
We want to show that Eρ(q|H , nv, nu) = Eρ(q ′|H , nv, nu). If nu + nv ≤ 3, then H
already includes a coalescence between 2 of the 4 taxa, and q = q ′ is determined by
H . If nu = 3 or 4 (or similarly nv), then the nu taxa entering u are exchangeable and
Eρ(q|H , nu = j) = Eρ(q ′|H , nu = j) = (1/3, 1/3, 1/3) for j = 3, 4.

If u has a single descendant leaf in N � {v}, then all cases are covered because
nu + nv = 4 implies that nv ≥ 3, so G (resp. enew) has no influence on q (resp. q ′),
and we can set t = 0 arbitrarily. Similarly, if v has a single descendant leaf in N � {u}
then all possible cases are covered and we can set t = 0.

For the last case when nu = nv = 2, let a1 and a2 be the 2 taxa entering u, and
let b1 and b2 the 2 taxa entering v. Since a1, a2 are exchangeable, and b1, b2 are
exchangeable, Eρ(q|H , nu = 2, nv = 2) = (x, y, y) for an ordering of the quartets
with a1a2|b1b2 first. Here x = 1 − 2y depends on the sub-blob G only, and not H or
the choice of 4 taxa. Then Eρ(q|H , nu = 2, nv = 2) = Eρ(q ′|H , nu = 2, nv = 2)
provided we set t to be a solution of e−t = 3

2 (1− x). Since x ≥ 0, t ≥ − log(3/2) as
claimed. ��

Although the case when the root of N+ can be moved outside the 2-blob is easily
handled in the proof above, the case when G traps the root is surprisingly challenging.
In light of this, we state a conjecture sufficient to ensure that t(G, ρ) ≥ 0 always
in Theorem 4. If this conjecture proves true, then in Corollary 5 we can remove the
assumption that none of N ’s non-trivial 2-blobs traps the root (as in Fig. 4 right). We
obtained evidence for this conjecture through substantial simulations and numerical
experiments, which did not uncover any counterexample. However, these investiga-
tions were necessarily finite and it is unclear how complicated a 2-blob might need to
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be to lead to an anomaly. In Appendix B, we present a proof of Conjecture 6 under
additional technical assumptions.

Conjecture 6 Let N+ be a 4-taxon rooted metric network with a single non-trivial blob
G, which is a 2-blob trapping the root, and with ∂G = {u, v}. Further suppose that
a1, a2 are taxa descended from u by paths outside G, and b1, b2 taxa descended from
v by paths outside G. Then Pρ(a1a2|b1b2

∣
∣ N+) ≥ 1/3, so N+ is not anomalous.

3.3 Topological requirements for anomalies

We next seek to characterize the topology of networks that may be (hard-)anomalous
for some choice of parameter values.

Binary trees are of class 1 and cannot be anomalous on 4 taxa (Larget et al. 2010;
Allman et al. 2011). Level-1 networks are also well characterized: If a 4-taxon binary
level-1 network N has a 4-cycle, then it is of class 2 and is not anomalous by applying
results from (Baños (2019), Proposition 6, Lemma 10). If N has no 4-cycle, then it is of
class 1, and may have 3-cycles. With a single displayed quartet, N is hard-anomalous
whenever it is soft-anomalous. If N has no 32-cycle then it is not anomalous because
quartet CFs on N are weighted averages of quartet CFs on its displayed trees. But if
N contains a 32-cycle (Fig. 3) then it is anomalous for some assignment of parameter
values (Baños (2019) for ρ = 0; Example 1 of this article for ρ < 1). This anomaly
occurs when the two leaves below the hybridization have a high probability of being
inherited by different parents of the hybrid and when the two parents are distantly
related. Then these leaves, which are sister in N , have a high probability of being non-
sister in gene trees, each one grouping with one of the hybrid node’s sisters instead.
In summary, for binary networks of level 0 or 1, anomalous networks must have a
32-cycle, and we conjecture that this property holds for binary networks of any level.

Conjecture 7 Let N be a 4-taxon binary semidirected metric network. If N is anoma-
lous, then N contains a 32-cycle.

As evidence toward Conjecture 7, we prove it under the restriction that N does not
have any root-trapping blob. This restriction includes the important class of networks
in which there are no reticulations between the outgroup clade and the ingroup clade,
and when the four-taxon set includes 1 outgroup and 3 ingroup taxa.

Theorem 8 Let N be a 4-taxon binary semidirected metric network of type 1 or 2.
If N contains a 32-cycle, then for any ρ < 1, N is anomalous under NMSC(ρ) for
some choice of numerical parameters. As a partial converse, if N is anomalous and
we further assume that N does not contain any non-trivial blob trapping the root, or if
N contains a root-trapping 2-blob whose removal from N disconnects a single taxon
from the other 3 taxa, then N contains a 32-cycle.

The binary assumption in this theorem is important for ensuring that a 3-cycle is
adjacent to exactly 3 edges (not part of the cycle). But it is not restrictive, because
edges of length 0 are permitted. In fact, the CF of the quartet displayed in a level-1
network with a 32-cycle is minimal when its hybrid edges have length 0 (Example 1).
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In their Proposition 1 and Fig. 6, Allman et al. (2023) construct a series of 4-taxon
networks containing a growing number of nested 32-cycles and show that the CF of
the displayed quartet converges to the most-anomalous value of 0 (under ρ = 0) as
the number of 32-cycles increases and hybrid edge lengths are set to 0.

The proof of Theorem 8 derives from Corollary 5 as shown below. However, if
Conjecture 6 were established, it could be used in place of the weaker Corollary 5, and
our argument for Theorem 8 would extend with little change to prove Conjecture 7.

We need the following useful lemmas to prove Theorem 8.

Lemma 9 For any two distinct leaves a, b of a rooted phylogenetic network N+, there
exists an up-down path from a to b in N+ going through LSA(a, b).

Proof This follows fromProposition 1 of Baños (2019), which implies that the semidi-
rected network induced by N+

{a,b} is equal to N−
{a,b}. Since z = LSA(a, b) belongs in

N−
{a,b}, z is on some up-down path between two leaves in {a, b}, and therefore between

a and b. ��
Lemma 10 Any edge in a blob is in a simple up-down cycle, that is, an undirected cycle
hu1 . . . ukh starting and ending at a hybrid node, such that u1 . . . uk is an up-down
path.

Proof We assume that the network is rooted, using any allowable placement of the
root for a semidirected network. Let e = (u, v) be an edge in a blob. Since e is not a
cut edge, it lies in an undirected cycle in the blob (which is not necessarily up-down).
Tracing this cycle in the direction of e, regardless of other edge directions, there must
be a last node h that is a descendant of e, since u is not such a descendant. The next
edge in the cycle, f , must then be traced backward with its child node h being a
descendant of e and parent node u′ not a descendant of e.

There are now down paths starting with e from u to h, and starting with f from
u′ to h (having only one edge). These paths cannot edge-intersect because u′ is not a
descendant of e, so h is hybrid. Any up paths from u and u′ to the root must intersect
at or above u and within the blob, since they pass through its LSA. Pick any two such
paths, and truncate them at their lowest intersection node, the apex. A composite path
built using these paths or their reversal forms the cycle. ��
Lemma 11 Let N be a 4-taxon binary phylogenetic network with a non-trivial 3-blob
B. If B has a lowest hybrid node with 2 descendant taxa, then N contains a 32-cycle.

Proof We work with a rooted network, using any permissible placement of the root if
N is initially semidirected. Suppose a, b are the descendant taxa of a lowest hybrid
node h of B, and c, d the other taxa. Wemay assume that B is the only non-trivial blob
in N by establishing the result in the network obtained by deleting all but 1 hybrid
parent edge for any hybrid node in any other non-trivial blob and then all edges with
no descendant taxa. Let M be the subnetwork of N composed of all nodes and edges
ancestral to a and b. Then M has the form of a chain of 2-blobs above the (a, b)
cherry. Each non-trivial 2-blob in M is contained in B, but M may also contain trivial
degree-2 nodes.
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Let z = LSA(c, d). By Lemma 9, there is an up-down path P from c to d that
passes through z, and thus has apex z. Note that z must be ancestral to a, b and in M ,
since otherwise the edge above z would induce the ab|cd split, and the only edges that
do that are descendant edges of h, which are not above c, d. In particular, P passes
through M .

Moreover, there is some up-down path from c to d that passes through a non-trivial
2-blob of M . To see this, consider all up-down paths from c to d that pass through M ,
and suppose none pass through a non-trivial 2-blob. Choose the lowest node u in M
through which any of these paths pass. Then u must be a trivial 2-blob of M , and the
edge (u, v) below it is a cut edge of M . But then in N , (u, v) is still a cut edge, which
separates a, b from c, d. But by the structure of N there is no such node u above h,
and neither h nor nodes below it, including u, are ancestral to c or d, a contradiction.

With P chosen to pass through a non-trivial 2-blob of M , consider the lowest
such 2-blob it passes through. P contains a lowest edge which is in that 2-blob, and
by Lemma 10 that edge is in an up-down cycle C in the blob. Let P1 be the initial
segment of P from c to its first intersection with C , and P2 be the final segment of P
from its last intersection with C to d. Pick a path P3 from the hybrid node of C down
to h. P3 must not intersect with P1 or P2 since we chose the lowest 2-blob through
which P passes and the lowest edge on P in that blob in picking C . Then C , P1, P2,
P3, and the edges below h form a 32-cycle. ��
Proof of Theorem 8 If N contains a 32-cycle, then it displays a network N ′ with only
one non-trivial blob, a 3-cycle with two hybrid-descendant taxa a1, a2, and two other
taxa b1, b2. From Example 1, numerical parameters may be assigned to N ′ so that it
is anomalous, with

Pρ(a1a2|b1b2
∣
∣ N ′) < Pρ(a1b1|a2b2

∣
∣ N ′) = Pρ(a1b2|a2b2

∣
∣ N ′). (5)

These parameters may be pulled back to give a subset of parameters on N so the
embedding of N ′ in N preserves path lengths and hybridization parameters. (The
pulled back parameters are not uniquely determined if an edge of N ′ maps to a multi-
edge path in N .)

For each hybrid edge pair of N in which exactly one edge e is not covered by N ′, set
γ (e) = 0. While such parameter choices are on the boundary of the parameter space
for N , the parameterization extends continuously to them. Assign arbitrary values to
all remaining numerical parameters on N . This makes qCFabcd(N ) = qCFabcd(N

′),
and since N is of type≤ 2 while displaying a1a2|b1b2, N is anomalous. By continuity,
N remains anomalous when all γ (e) = 0 are increased slightly so all hybridization
parameters are in (0, 1).

We turn to the second claim, and first consider networks with the property that any
blob trapping the root is of degree 2 and induces a trivial split of the 4 taxa. If a network
has such a blob B, then any other blob cannot trap the root, and B can be replaced by
a tree edge without affecting the network’s quartet CF, by Theorem 4. Hence, we only
need to consider networks whose blobs do not trap the root.

If a network is anomalous, by Corollary 5 it cannot have non-trivial blobs all of
degree at most 2. Thus we only need to consider networks with at least one non-trivial
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3-blob. Now consider a binary metric network N whose non-trivial blobs are all of
degree 3 or less. Then N has a cut edge inducing a non-trivial split and is of class 1. Let
q(N ) be the CF of the quartet displayed in N . We show by induction on the number of
hybrid nodes in N that q(N ) < 1/3 implies the presence of a 32-cycle as a subnetwork
of N . Let h be a lowest (hybrid) node in a 3-blob. If h has 2 descendant leaves, then
there exists a 32-cycle in N by Lemma 11. If instead, h has a single descendant leaf,
then q(N ) = γ1q(N1) + γ2q(N2) where ei (i = 1, 2) are the parent edges of h with
inheritance probabilities γi , and Ni is the subnetwork of N obtained by deleting e j ,
j �= i and recursively pruning any unlabelled leaves. Each Ni has blobs of degree 3
at most, displays the same split as N , has fewer hybrids than N , and its non-trivial
blobs do not trap the root (because any cut edge that may contain the root in N must
be retained as a cut edge in Ni , and could contain the root of Ni ). Since q(N ) < 1/3
implies q(Ni ) < 1/3 for at least one i , by induction at least one Ni must contain a
32-cycle. This cycle is also a subnetwork of N , proving the claim.

Finally, consider anomalous binary networks with a 4-blob, which display at least 2
quartets by Lemma 1. As class-3 networks are never hard-anomalous, we may assume
that N displays exactly 2 quartets, say ab|cd and ad|bc. We again use induction on
the number of hybrid nodes. Let h be a lowest (hybrid) node of N in its 4-blob. It must
have exactly 1 descendant, so qCF(N ) = γ1qCF(N1)+γ2qCF(N2)with subnetworks
Ni constructed as above. Both N1 and N2 display quartets displayed by N , so they
cannot display ac|bd. Since qCF(N ) is a convex sum, one of them, say N1, must be
anomalous. Since the root is not trapped in a blob in N , the same is true for N1. Then
N1 must contain a 32-cycle: either by induction if N1 has a 4-blob, or by the previous
steps otherwise. ��

3.3.1 32-Cycle containment

While finding a network’s blobs can be done in time that is linear in the number of
nodes and edges (Tarjan 1972), it is not easy to decide if a given networkwith k hybrids
contains a 32-cycle. Even the number of subnetworks with exactly 1 hybrid node can
be as large as k2k−1, growing exponentially. For a particular 4-taxon network with a
3-blob B, a recursive algorithm can use the following rules to decide if B contains a
32-cycle.

1. If B has a lowest hybrid node with 2 descendants, then the network has a 32-cycle
(Lemma 11).

2. If the edges that are incident to B and that exit B (for some placement of the
root) have at most 2 descendants total, then B does not contain a 32-cycle. This is
because the number of descendant leaves of a 32-cycle is either 3 (when the root
is outside the blob) or 4 (when the root is inside the blob).

If neither of these rules can be applied, then one can find a lowest hybrid node h in
B and recursively consider the two subnetworks obtained by removing either parent
edge of h. Although the worst-case scenario might still have an exponential time
complexity, deciding if rule 1 or 2 applies takes constant time after calculating a blob
decomposition, and can drastically reduce computation time in many cases.
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3.4 Anomalies with correlated inheritance

In some networks, the dependence of quartet CFs on the correlation ρ can beweak. For
example, quartet CFs are not affected by ρ at reticulations above the LSA of 3 (or all)
of 4 leaves, because these leaves become exchangeable if they do not experience any
coalescence before reaching their LSA. If all reticulations have a single descendant
leaf, then the quartet CFs are independent of ρ, because there is always at most 1
individual at each hybrid node. For example, both reticulations in the class-3 network
of Fig. 2 (right) have a single descendant leaf, so its quartet frequencies do not depend
on ρ. This network is soft-anomalous for all ρ ∈ [0, 1]. In contrast to soft-anomalies,
(hard-)anomalies cannot occur when ρ = 1.

Proposition 12 Under the common inheritance model with ρ = 1, a 4-taxon binary
metric network is not anomalous.

Proof Let N be a 4-taxon binary network. With ρ = 1, each gene tree must evolve
along a single tree T displayed in N , considered as a species tree, and chosen with
probability γ (T ). So

qCF(N ) =
∑

T∈D(N )

γ (T )qCF(T ).

If N is of class 1, then all trees displayed in N have the same quartet topology. In
each displayed tree’s qCF, the entry for the matching quartet is greater than or equal
to the other two entries, so the same holds for qCF(N ) and N is not anomalous.

If N is of class 2, let S1 and S2 denote the two quartets it displays. Order quartets
with S1 and S2 first. Each tree T displayed in N displays either S1 or S2, so the third
entry in qCF(T ) is smaller than or equal to the first and second entries. Since qCF(N )

is a convex sum, the same holds for N , and N is not anomalous. ��
Aclass-2 binary networkmay be soft-anomalous, not because of its non-displayed split
(by Proposition 12) but because of the rankings of its displayed quartets: Rankings
by γ weights and by CFs may differ because quartet CFs are influenced by both
edge weights and edge lengths. For example, the class-2 network of Fig. 2 (middle)
has two displayed splits S1 = AB|CD and S2 = AD|BC with quite different CFs
under ρ = 1 (P1(S1) ≈ 0.479 and P1(S2) ≈ 0.316) whereas their weights are
equal γ (S1) = γ (S2) = 0.5. If the inheritance probability of the upward-pointing
hybrid edge e is increased slightly to a value above 0.5, this network becomes soft-
anomalous. For example, with γ (e) = 0.51 we have γ (S1) = 0.49 < γ (S2) yet
P1(S1) ≈ 0.474 > P1(S2) ≈ 0.319.

4 Recursive calculation of expected quartet concordance factors

Given a metric phylogenetic network N , the qCF(N ) vector can be calculated by
first calculating the probability of each topological gene tree, using existing software
(under ρ = 0). However, a more efficient method under the NMSC(ρ) follows the
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inductive proof and notation of Proposition 3. Algorithm 1 below calculates qCF(N )

for a 4-taxon network N of any level, including non-binary ones.
The implementation of this algorithm in the Julia package QuartetNetwork

GoodnessFit (Ané 2023) contains several improvements to reduce complexity,
which we omit from this presentation to focus on the algorithm’s main idea. First, any
2-blob with a single descendant leaf is simplified to a single edge of arbitrary length,
based on Theorem 4, using that external edge lengths to not affect quartet CFs. Before
this step, the root is moved to a degree-3 node, as this may move the root outside (or
to the boundary) of a degree-2 blob, which may later be simplified if the 2-blob has a
single descendant leaf. This is done at every iteration if recursion is needed. Second,
in the case of � = 2 descendant leaves of a lowest hybrid node, we use the symmetry
of the two “minor” CFs (line 34) to skip calculations on subnetwork N ( jk) for j > k,
so the loop on line 22 has only m(m − 1)/2 steps instead of m2. For a bicombining
network, this recursion involves 3 steps instead of 4.

In the worst-case, Algorithm 1 has exponential running time O(3κ) where κ is the
number of hybrid nodes, assuming a bicombining network. Also, on a network with n
taxa, this algorithm may need to be repeated for all O(n4) subsets of 4 taxa, so it will
not scale to large networks (many taxa or many reticulations). In our experience, the
shortcuts taken by cases � = 4 (line 11) or � = 3 (line 15) and by simplifying 2-blobs
with a single descendant leaf lead to fast running times on many networks, including
networks with κ ≈ 20 hybrid nodes. Further improvements could re-use calculations
across different 4-taxon subsets from the same network, but the worst-case time would
remain exponential in the number of hybrid nodes within the “central” 4-blob or 3-
blob, in which a lowest hybrid node has � = 1 or 2 descendants among the 4 taxa.
Still, this approach may be practical for CF-based inference methods when n and κ

are moderate, e.g. within divide-and-conquer approaches in which inference is done
for each blob separately using a small n and κ for each blob.

To calculate the probabilityP0(T |N+) of a rooted gene tree T , the generic algorithm
is known to scale poorly with the degree of a blob (Elworth et al. 2019, section 13.5).
In contrast, our algorithm finishes as soon as 3 taxa are below the blob regardless of
the blob complexity and degree-2 blobs appearing during the recursion are eliminated
as above. These improvements are specific to the context of unrooted 4-taxon gene
trees.
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Algorithm 1 Recursive algorithm to calculate expected quartet CFs from a network
under the NMSC(ρ)
Input: ρ ∈ [0, 1]; metric 4-taxon network N with branch lengths in coalescent units
1: function tree- expected- qCF(rooted tree N on 4 taxa)
2: t ← length of internal edge in the unrooted version of N  t = 0 if tree N is unresolved
3: i ← index of split displayed in N  i arbitrary if N is unresolved
4: return (q1, q2, q3) where qi = 1 − 2e−t/3 and q j = e−t/3 for j �= i

5: function tree- expected- qCF(rooted tree N on 3 of 4 taxa)
6: t ← length of edge in N above the sister pair  t = 0 if tree N has no sister pair
7: i ← index of split corresponding to the sister taxon pair in N  i arbitrary if N has no sister pair
8: return (q1, q2, q3) where qi = 1 − 2e−t/3 and q j = e−t/3 for j �= i

9: function expected- qCF(network N on 4 taxa)
10: reduce N to an LSA network
11: if N is a tree then
12: return tree- expected- qCF(N )
13: h ← a lowest hybrid node of N  subnetwork Nh rooted at h is a tree
14: � ← number of descendant leaves of h  � = 1, 2 or 3
15: if � = 3 then  Nh is 3-taxon rooted tree
16: return tree- expected- qCF(Nh )

17: (v1 . . . , vm ) ← parent nodes of h  use recursion, on subnetworks with no hybridization at h
18: if � = 2 then  Nh is a 2-taxon tree
19: (a1, a2) ← sister taxon pair in Nh
20: i ← index of split corresponding to (a1, a2)
21: t ← length above (a1, a2) in Nh  t = 0 if Nh has a polytomy below h
22: for j, k ∈ {1, . . . ,m} do  apply (3)
23: N ( jk) ← subnetwork of N after removing all hybrid edges (vp, h) for p �= j, k

24: delete from N ( jk) all edges and nodes below h  next: add taxa a1, a2 back
25: if j = k then
26: add new external edges (h, a1) and (h, a2) to N ( j j)

27: w j j = (1 − ρ)γ ((v j , h))2 + ργ ((v j , h))

28: else
29: delete h and its incident edges (v j , h) and (vk , h) from N ( jk)

30: add new external edges (v j , a1) and (vk , a2) to N ( jk)

31: w jk = (1 − ρ)γ ((v j , h))γ ((vk , h))

32: q( jk) ← expected- qCF(N ( jk))
33: q(0) ← ∑m

j,k=1 w jk q
( jk)

34: return (q1, q2, q3) where qi = (1 − e−t ) + e−t q(0)
i and q j = e−t q(0)

j for j �= i

35: if � = 1 then  Nh has a single edge
36: for j ∈ {1, . . . ,m} do
37: N ( j) ← subnetwork of N after removing all hybrid edges (vp, h) for p �= j

38: q( j) ← expected- qCF(N ( j))
39: return q = ∑m

j=1 γ ((v j , h))q( j)
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5 Simulation study: prevalence of hard anomalies on 4 taxa

Because anomalous networks may hinder and mislead inference from quartet CFs, we
sought to quantify how often they would be encountered in practice, by simulating
under a birth-death-hybridization (BDH)model with biologically realistic parameters.

5.1 Birth-death-hybridization networks

We simulated 800 species networks according to a BDH model first introduced by
Zhang et al. (2017) as a prior for Bayesian inference of species networks. Under the
BDH process, each lineage speciates with rate λ and goes extinct with rate μ. Also,
each pair of coexisting lineages has rate ν of hybridizing. We used an extension of
this process as implemented in SiPhyNetwork (Justison et al. 2023), which allows
for reticulations to depend on the genetic distance between the two involved lineages,
and for three types of reticulations. Namely, when a reticulation is proposed between
lineages separated by distance δ (calculated as the average length of all up-down paths
between the two lineages in the network simulated thus far), the proposed reticulation is
successful with a probability f (δ). We chose a step function with success probability
1 below a distance threshold d, and 0 above the threshold: f (δ) = 1 for δ ≤ d
and f (δ) = 0 if δ > d. Second, when a proposed reticulation is successful, it can be
lineage-generating (creating a third lineage, type “+") lineage-neutral (gene flow from
one lineage into the other, type “0") or lineage-degenerative (fusing the two lineages
into a single one, type “−" ). The probability distribution of the reticulation type,
conditional on a successful reticulation, is denoted by π = (π+, π0, π−). Since only
one event occurs at a time, the resulting networks are binary. Tree edges have positive
lengths almost surely. Lineage-generating events create 2 hybrid edges of length 0,
and lineage-neutral events create 1 hybrid edge of length 0 (before extinct species are
pruned).

We used the general sampling strategy (GSA) as implemented in SiPhyNetwork
to sample BDH networks with a fixed number of species n = 4, n = 6 or n = 8.
This strategy was shown to eliminate various biases of the simple sampling strategy
(Hartmann et al. 2010). Briefly, the general sampling strategy simulates networks until
they have 0 or a very large number of species, then returns a network stopped at a
time point when the network has the desired number n of species, uniformly among
all times with n species.

Parameters for the BDH model were chosen to cover a range of values (Table 1)
including speciation andhybridization rates estimated fromempirical data onhominids
(Bokma et al. 2012; Stadler et al. 2016), spruce, yeast (Zhang et al. 2017), and
rice (Rabier et al. 2021). Reticulation-type probabilities were set to favor lineage-
generating events (π+ = 0.5) or lineage-neutral events (π0 = 0.5). We chose distance
thresholds d proportionally to the birth rate, to obtain relevant values for the total height
of the simulated networks: about 14%, 44% or 90% of the median age (distance from
the LSA to the tips) among simulated networks.

We conducted one simulation with 144 combinations of parameters under the
traditional NMSC(0) with independent inheritance (Table 1with ρ fixed to 0).We con-
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Table 1 Parameters used to simulate networks under the birth-death-hybridization process

Parameter Interpretation Values

λ Speciations per coalescent unit 0.1, 0.3, 1, 3

μ/λ Relative extinction rate (turnover) 0.1, 0.9

ν Hybridization rate 0.5λ

π = (π+, π0, π−) Proportions of hybridization types (0.5, 0.25, 0.25), (0.25, 0.5, 0.25)

d Maximum hybridization distance 0.2λ, 0.6λ, 1.2λ

n Number of taxa 4, 6, 8

ρ Inheritance correlation 0, 0.3, 0.6, 0.8, 0.9, 1

For each parameter combination, 800 networks were simulated with SiPhyNetwork. When n was
varied, ρ was fixed to 0. When ρ was varied, n was fixed to 4. Expected quartet CFs were calculated
with QuartetNetworkGoodnessFit. Empirical quartet CFs were simulated from 300 trees with
PhyloCoalSimulations

ducted another simulation with 288 combinations of parameters, under the NMSC(ρ)
with variable correlation values (Table 1 with n fixed to 4 taxa). For n > 4, each
n-taxon network yielded 15 (for n = 6) or 70 (for n = 8) nonindependent 4-taxon
subnetworks.

SiPhyNetwork can simulate networks of all levels, with all types of blobs. For
example, 2-blobs can result from lineage-degenerative events, or from any reticula-
tion event followed by extinction. Also, 2-blobs naturally result from m-blobs with
m > 2 when extracting the subnetwork for a subset of 4 taxa from a larger network.
Justison and Heath (2022) showed that most simulated networks are complex (e.g. not
tree-based) unless hybridization success requires short genetic distances between retic-
ulating lineages.

5.2 Classifying 4-taxon subnetworks

From each simulated species network and each subset of 4 taxa, we extracted the sub-
network induced by the 4 taxa. To classify each 4-taxon network, we first determined
its non-trivial blobs. For each network of class 1, we determined whether it had a
non-trivial 3-blob. If so, we determined whether it contained a 32-cycle, as we conjec-
ture that this is a requirement for a hard-anomaly (at least under further assumptions,
by Theorem 8). To do so efficiently without extracting all subnetworks, we used the
algorithm described in Sect. 3.3.

For each 4-taxon network N with a 4-blob, we determined its displayed quartets
to determine if N was of class 2 or 3. In a network with κ reticulations, there are
up to 2κ displayed trees to extract to determine quartets. To avoid the computational
bottleneck of this exponential complexity, we took advantage of the following. When
sampling hybrid edges to extract displayed trees, we checked for the presence of 3-
blobs in displayed subnetworks. If a subnetwork had a 3-blob thenwe did not extract its
displayed trees, because all of them share the split corresponding to the subnetwork’s
cut edge. This shortcut efficiently reduced the computational load.
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The identification of blobs and other network manipulations to determine a net-
work’s class were carried out with utilities from PhyloNetworks (Solís-Lemus
et al. 2017). The RCall package was used to integrate SiPhyNetwork’s R code
and Julia code (Byrne et al. 2022).

5.3 Detecting anomalies

For each 4-taxon subnetwork N , we calculated qCF(N ) using Algorithm 1 as imple-
mented in QuartetNetworkGoodnessFit. To mimic phylogenomic data sets
with a few hundred unlinked loci, e.g. from target sequence capture, we simulated a
sample S of 300 gene trees according to the NMSC(ρ) using PhyloCoalSimula
tions (Fogg et al. 2023), and calculated the empirical qCF(S) observed from these
gene trees (2). Even if N is not anomalous, the sample of true gene trees would give
an anomalous signal if qCF(S) gives a greater weight to a split not displayed in the
network, than to some split displayed in the network. In that case, the network would
appear anomalous even in the ideal case when each gene tree can be inferred with-
out error. We considered the network as empirically anomalous from S by applying
Definition 5 using the observed qCF(S) instead of the theoretical qCF(N ).

Code to reproduce the simulation and figures is available at
https://github.com/cecileane/simulation-anomalous-4taxnet-prevalence.

5.4 Factors affecting the prevalence of anomalies.

Overall, anomalous 4-taxon networks are rare at low speciation rates λ (Fig. 5). This
is intuitive, because slow speciation results in long edges between speciations and, in
turn, less ILS.

Anomalous networks were rare at short relative distance thresholds d/λ (Fig. 5).
Intuitively, failure of reticulations between genetically distant populations implies
fewer reticulations overall, and hence a decrease in network complexity. Indeed, the
proportion of class-1 networks with a 32-cycle (to exclude trees and capture class-1
networks with the potential to be anomalous) and the proportion of class-2 networks
increasewith the genetic distance threshold,with about 10%and15%for each category
at our highest value d/λ = 1.2 (Fig. 6). The prevalence of anomalous networks within
each category is typically below 5–10% among class-1 networks with a 32-cycle, and
typically below 1–5% among class-2 networks (Fig. 7). So each category contributes
about equally to the prevalence of anomalous networks overall.

The proportion of lineage-generative reticulations π+ has little influence on the
proportion of the above categories (with topologies that might be anomalous), but
does influence edge lengths. Lineage-degenerative and lineage-neutral events create
1 or 2 hybrid edges of positive length, while both hybrid edges have length 0 at a
lineage-generative event. In a 32-cycle, themost anomalous assignment of edge lengths
corresponds to both hybrid edges having length 0. Therefore it is not surprising that
the prevalence of anomalous networks increases with π+ (Fig. 5).

Under the wide range of parameters in our study, anomalous 4-taxon networks
occur at low frequency, less than 1%. If inference methods can be robust to misleading

123

https://github.com/cecileane/simulation-anomalous-4taxnet-prevalence


Anomalous networks under the multispecies… Page 27 of 36    29 

Fig. 5 Overall percentage of anomalous 4-taxon networks among all 4-taxon subsets, under the NMSC(0).
The spacing on the vertical axis corresponds to the square-root scale to better separate small values. Labels
correspond to the original scale (%). Top: networks are classified as anomalous based on their expected
qCFs (1). Bottom: networks are classified based on the empirical qCFs in 300 loci (2). Simulations from
different speciation rates λ are in different panels. Colors distinguish different extinction rates μ (blue:
high turnover rate μ/λ; red: low turnover). Points are filled (resp. empty) at low (resp. high) probability
of lineage-generating reticulations and high (resp. low) probability of lineage-neutral reticulations. Point
shapes indicate the number of taxa in the full network: square for 4 taxa (percentage among 800 simu-
lated networks), circle for 6 taxa (percentage among 12,000 4-taxon subnetworks), and triangle for 8 taxa
(percentage among 56,000 4-taxon subnetworks)

information on 1% of 4-taxon sets, then these methods may perform well, especially
at low speciation rates relative to the rate of ILS, such as appears to be the case in
many biological contexts (λ < 0.5 in the studies cited above).

However, as many as 10% of 4-taxon networks appear empirically anomalous from
a sample of 300 gene trees, at higher speciation rates like λ = 3 speciations per
coalescent unit. This high rate means that new species form three times faster than
gene lineages coalesce, and implies a high rate of ILS. Given a population size of
12,000 diploid individuals, for example, λ = 3 corresponds to a speciation every 8000
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Fig. 6 Percentage of 4-taxon networks of class 1 and containing a 32-cycle (top), and of class 2 (bottom).
Panels show different distance thresholds d, as this parameter had most influenced on the proportion of
network classes. Colors distinguish the different speciation rates λ. The points’ fill and shape are as in Fig. 5

generations on average. Under high diversification rates, then, the impact of anomalies
could be much more pronounced and mislead inference methods, if not modeled. For
example, methods assuming level-1 networks may correctly model the coalescent on
an anomalous network of class 1 (with a 32-cycle) but would be unable to model an
anomalous network of class 2 because on 4 taxa, a level-1 4-blob cannot be anomalous.

For a non-anomalous network, an empirical anomaly may occur due to stochastic
variation of the empirical qCFs around the expected qCFs. This stochastic variation
would be strongest for networks with expected qCFs near the anomaly boundary, e.g.
near (1/3, 1/3, 1/3) for class-1 networks. For a network N with a topology that may
be anomalous (including a 32-cycle), qCF(N ) would be near the anomaly zone if its
edge parameters are near parameters that make N anomalous. Figure 5 suggests that
a large proportion of networks are near the anomaly zone when the speciation rate
and/or the distance threshold is high.
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Fig. 7 Percentage of anomalous 4-taxon networks within each subset in Fig. 6: among class-1 networks
containing a 32-cycle (top) and among class-2 networks (bottom). Point colors, fill and shapes are as in
Fig. 5. Each point represents a variable number of 4-taxon subnetworks, most influenced by d/λ and the
number of taxa in the full network: with an average above 200 for 6 or more taxa (circles and triangles). For
4 taxa in the full network (squares), the sample size had an average between 11 (when d/λ = 0.2) and 47
(when d/λ = 1.2) for class 1 with 32-cycles, and between 20 (when d/λ = 0.2) and 118 (when d/λ = 1.2)
for class 2

In our second simulation study with correlated inheritance, networks are never
hard-anomalous when ρ = 1 (Proposition 12) and the prevalence of hard-anomalous
networks decreases with increasing ρ (Figs. 8 and 9). In contrast, the prevalence of
empirically anomalous networks is stable across ρ values. It is about 10 times higher,
e.g. around 8% using 300 loci when λ = 3 and d/λ = 1.2 compared to 0.5–1% of true
anomalies, for ρ = 0.When ρ = 1, all empirical anomalies are due to near-anomalous
qCFs because none of the networks are truly anomalous. Given their large prevalence,
near-anomalous networks may have a substantial practical impact on the accuracy of
network inference.

Often, genomic analyses use more than 300 loci. A larger number of loci may
decrease the prevalence of empirical anomalies thanks to more accurate estimation
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Fig. 8 Overall percentage of anomalous 4-taxon networks among all 4-taxon subsets, under the NMSC(ρ)
with inheritance correlation varied between 0 (independent lineages) to 1 (shared inheritance). The ver-
tical axis is on the square-root scale. Top: networks are classified as anomalous based on their expected
qCFs (Definition 5). Bottom: networks are classified based on the empirical qCFs in 300 loci. Colors dis-
tinguish the different distance thresholds d. Points are filled (resp. empty) at low (resp. high) probability
of lineage-generating reticulations and high (resp. low) probability of lineage-neutral reticulations. Point
shapes indicate the extinction rate μ: square for low turnover (μ/λ) and circle for high turnover. Each point
represents the percentage among 800 four-taxon networks

of quartet CFs. But in real data analysis, gene tree estimation error (not modeled
here) may reduce estimation accuracy and be another contributing factor to empirical
anomalies.
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Fig. 9 Percentage of anomalous 4-taxon networks within each subset in Fig. 6: among class-1 networks
containing a 32-cycle (top) and among class-2 networks (bottom). Point colors, fill and shapes are as in
Fig. 8. Each point represents a variable number of four-taxon subnetworks, most influenced by d/λ: the
sample size had an average between 11 (when d/λ = 0.2) and 46 (when d/λ = 1.2) for class-1 networks
with 32-cycles, and between 21 (when d/λ = 0.2) and 116 (when d/λ = 1.2) for class-2 networks
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Appendix A The root is not identifiable from quartet CFs

Alternate proof of Proposition 3 Let N+
1 and N+

2 on taxa a, b, c, d have the same
semidirected network N−. Note that on N+

i the first coalescence that occurs below
the LSA determines the gene quartet tree that forms, and conditional on no coales-

123



   29 Page 32 of 36 C. Ané et al.

cence occurring below the LSA each quartet forms with probability 1/3. This implies
that the structure above the LSA has no effect on gene quartets, and the qCF(N+

i ) is
unchanged by removing all edges and nodes above the LSA and rerooting at the LSA.
We thus assume the N+

i are LSA networks. However, N+
1 and N+

2 may still be rooted
differently.

Let Bi denote the collection of edges and nodes in N+
i that are below or equal

to at least one hybrid node of N+
i . Let Hi be the set of hybrid nodes of N+

i , and
Ai the remaining edges and nodes of N+

i . Since the semidirected networks are the
same, with the obvious identifications, B1 = B2 = B as directed graphs, and H1 =
H2 = H . Moreover, by making distinct copies v1, v2, . . . , vnv of each hybrid node
v ∈ Hi to serve as child nodes for the nv edges parental to v, the sets A1, A2 can
be viewed as forming rooted trees, which differ only in their root locations. With this
decomposition, N+

i is recovered from Ai and B by identifying all the vi with v (as is
done in practice via a shared label in extended Newick notation (Cardona et al. 2008)).
Let H̃ = ∪v∈H {v1, . . . , vnv }.
Using that the first coalescent event to occur among four gene lineages determines the
quartet tree, we get

qCF(N+
i ) = Pρ(a coalescence occurs in Bi ) qCF(N+

i | a coalescence occurs in Bi )

+
∑

f ∈H̃4

Pρ((a, b, c, d) lineages reach nodes f with no coalescence )

qCF(Ai |(a, b, c, d) lineages distinct at f ).

Since Bi = B, the first term here is independent of i , as is the first factor in each
term of the sum. Since ρ is irrelevant on a tree, and since the location of the root in
tree Ai does not matter for quartet CFs (Allman et al. 2011), the second factor is also
independent of i . Thus the qCF(N+

1 ) = qCF(N+
2 ). ��

Appendix B Lack of anomalies from degree-2 blobs

We prove here a weak version of Conjecture 6, under additional assumptions.

Lemma 13 Let N+ be a 4-taxon rooted metric network with a single non-trivial blob
G, which is a 2-blob trapping the root with boundary {u, v}. Let a1, a2 (resp. b1, b2)
be the taxa descended from u (resp. v) as in Conjecture 6.

Let Fu (resp. Fv) be the funnel defined as the set of edges and nodes ancestral to u
but not v (resp. v but not u) in N+. Define G0 as the core subgraph of edges and nodes
ancestral to both u and v, such that G is partitioned as G0 � Fu � Fv . Attachment
nodes c1, . . . , cm are defined as nodes in G0 that are incident to some edge in Fu
or Fv . If there are m ≤ 2 attachment points and if G0 does not trap the root, then
Pρ(a1a2|b1b2

∣
∣ N+) ≥ 1/3, so N+ is not anomalous.

Note that this lemma could be used recursively, to extend the result to a larger class of
networks. If G0 traps the root, we can form a new network Ñ+ with fewer edges than
N+ by considering G0 as a degree-2 blob with boundary nodes ũ = c1 and ṽ = c2 to
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which 2 pairs of leaves are attached. If Ñ+ is not anomalous, the proof below implies
that N+ is not anomalous either. So we can check if the funnels of ũ and ṽ in G0
define at most 2 attachment nodes, so as to apply the lemma recursively.

Proof Let E denote the event that a coalescent event occurs in Fu or Fv , thus deter-
mining the quartet a1a2|b1b2, and E the complementary event. Let q be the CF of
a1a2|b1b2 under NMSC(ρ) on N+.

If m = 1 then conditioned on E , q = 1, while conditioned on E , q = 1/3 by
exchangeability of lineages at c1. Thus q ≥ 1/3.

For m ≥ 2 note that any path from the root to u (resp. v) consists of a path from
the root to some ci in G0, then a path from ci to u (resp. v) in Fu (resp. Fv). Denote
by γi (resp. δi ) the probability under Pρ of the path from ci to u in Fu (resp. to v in
Fv), which may be 0 if ci is incident to Fv but not Fu . Let γ = (γ1, · · · , γm) and
δ = (δ1, · · · , δm). Conditioned on E, q = 1. Therefore

q = Pρ(E) + (1 − Pρ(E))

m∑

i, j,k,l=1

γiγ jδkδl p(i j |kl)

where p(i j |kl) is defined as a concordance factor on G0 with the attachment nodes
considered as leaves:

p(i j |kl) = Pρ(ci c j |ckcl).

These quartet probabilities could be complicated but they only depend on the core G0,
not on the funnels or the attachment probabilities γ and δ. In what follows we assume
that all edges have length 0 in and below Fu and in and below Fv , so that coalescences
do not occur between a1, a2 (or between b1, b2) before they reach the core. Indeed,
this scenario minimizes q if all other parameters are held fixed, because it implies that
Pρ(E) = 0.

Now suppose that m = 2. Define n(i, j, k, l) ∈ {2, 3, 4} as the maximum number
of indices in (i, j, k, l) that are equal to each other. For example, n(1, 1, 1, 1) = 4,
n(1, 1, 1, 2) = 3 andn(1, 1, 2, 2) = n(1, 2, 1, 2) = 2.By exchangeability, p(i j |kl) =
1/3 if n(i, j, k, l) is 3 or 4. Let q0 = p(11|22) = p(22|11). SinceG0 does not trap the
root, q0 ≥ 1/3 by Theorem 4. Then p(12|12) = p(12|21) = p(21|12) = p(21|21) =
(1−q0)/2 because for any i, j, k, l we have that p(i j |kl)+ p(ik| jl)+ p(il| jk) = 1.
So we can write

q = q0(γ
2
1 δ22 + γ 2

2 δ21) + 1 − q0
2

(2γ1γ2 2δ1δ2) + (1/3)
∑

a=(i, j,k,l)
n(a)≥3

γiγ jδkδl

= q0(γ1δ2 − γ2δ1)
2 + 2γ1γ2δ1δ2 + (1/3)

∑

a=(i, j,k,l)
n(a)≥3

γiγ jδkδl

= 1/3 + (q0 − 1/3)(γ1δ2 − γ2δ1)
2 ≥ 1/3.

��
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